The forecast of growing air transport in the upcoming decades faces the challenge of an increasing environmental impact. Lightweight design is a strong lever to lower the fuel consumption and, consequently, with it the emissions of aviation. High performance composites and composite coatings are a key technology to help achieve these aims thanks to their favourable combination of mechanical properties and low weight. Moreover, renewable materials like bio-based fibres and resin systems offer potential environmental advantages. Today engineering solutions for airframes are still heavily dependent on metals (mostly aluminium and titanium alloys), due to the many favourable properties, such as high mechanical strength, easy recyclability and formability. However, a major drawback of metals is their generally low corrosion resistance, which requires frequent maintenance of components, which is time consuming and costly and raises safety concerns in the case of safety critical systems. In addition to negative economical and societal aspects, corrosion of metal systems and components for mobility causes significant impact on the environment that is reflected in overexploitation of valuable but limited raw materials. Moreover, state of the art corrosion protection systems has limited effects on corrosion protection and/or use toxic ingredients (e.g. CrVI) with adverse effects on human health and the environment.
Therefore, the aim of the SMART project is to develop a proof-of-concept (PoC) on eco-friendly, cost effective, self-healing composite coatings for corrosion protection of airframes. The proposed coating system will be based on biodegradable natural products (cellulose nanofibers and eco-friendly corrosion inhibitors)) with extend utilisation lifetime, lower energy and resource demand due to the self-healing ability, will be lighter and allow for better reuse and recyclability compared to state-of-the-art corrosion protection systems. Cellulose fibres possess low weight, low abrasive nature, are cheap and renewable and therefore excellent candidates for eco-friendly composite coatings for the aviation industry. One drawback of cellulose nanofibers for composite coatings is their hydrophilic character, which makes them incompatible with hydrophobic polymer matrices. Therefore, in the SMART project different pre-treatment procedures of the cellulose nanofibers will be tested to improve the interfacial adhesion between the fibres and the epoxy matrix. The corrosion inhibitors will be physically or chemically adsorbed on cellulose nanofibers, embedded into an epoxy resin and subsequently applied on the pre-treated aluminium alloy. The pre-treatment of the substrate is necessary in order to provide good adhesion and therefore optimal anticorrosion ability of the SMART coatings. Another important goal of the SMART project will be to understand the triggering/release mechanism of the eco-friendly corrosion inhibitor and the corrosion protection mechanism of the developed SMART coatings. Therefore In-situ electrochemical measurement techniques (e.g. Ion microprobe, Scanning Vibrating Electrode Technique and Scanning Kelvin Probe), classical electrochemical measurements and analytical techniques will be used.
Allgemeines:
Program: Take off
Funding agency: FFG
Project duration: 12 months
COOKIES
Diese Website verwendet Cookies – nähere Informationen dazu und zu Ihren Rechten als Benutzer finden Sie in unserer Datenschutzerklärung am Ende der Seite. Mit der Nutzung dieser Website akzeptieren sie unsere Datenschutzbestimmungen.
This website uses cookies - see our privacy policy at the bottom of this page for more information about cookies and your rights as a user. By using this website you accept our privacy policy. Cookie settings
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.